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ABSTRACT 

Dermatophyte fungi, responsible for a variety of skin infections, present a significant public health 

challenge worldwide. Recent epidemiological studies indicate that dermatophyte infections affect 

approximately 20-25% of the global population annually, with a noticeable increase in cases over the 

past decade. Specifically, data from the World Health Organization (WHO) shows a 15% rise in reported 

infections between 2015 and 2020, highlighting an urgent need for improved diagnostic methods. 

Accurate and timely identification of dermatophyte species is critical for effective treatment and 

management of these infections. Dermatophyte fungi are a major cause of skin infections, and their 

accurate identification is essential for timely and effective treatment. The study applies deep learning 

techniques for dermatophyte fungi classification using the DEFUNGI dataset, which consists of 

microscopic images of different fungal species. The proposed approach involves image preprocessing, 

feature extraction, class balancing using Synthetic Minority Over-sampling Technique (SMOTE), and 

classification using ensemble learning models such as AdaBoost and DLCNN. The dataset is pre-

processed by resizing the images to 64x64 pixels, normalizing pixel values, and flattening the images 

into feature vectors. The experimental setup includes splitting the dataset into 70% training and 30% 

testing data, followed by training AdaBoost and DLCNN classifiers. The AdaBoost classifier achieved 

an accuracy of 97.84%, while the DLCNN classifier outperformed it with an accuracy of 99.21%. 

Performance metrics such as precision, recall, and F1-score further confirmed that DLCNN 

demonstrated superior classification performance compared to AdaBoost. The confusion matrices and 

classification reports highlight high classification precision and minimal misclassification errors. The 

findings suggest that ensemble learning models, particularly DLCNN, are highly effective for 

dermatophyte fungi classification, making them valuable for automated dermatological diagnostics. 

This research contributes to medical mycology by providing a robust, high-accuracy model for fungal 

species identification. Future research will explore deep convolutional neural networks (CNNs) to 

enhance classification accuracy and generalization for real-world applications. 

Keywords: Dermatophyte fungi, Skin infections, AdaBoost classifier, DLCNN (Deep Learning 

Convolutional Neural Network), Microscopic images. 

1.INTRODUCTION 

Dermatophyte fungi are a group of pathogenic fungi that cause a variety of skin, hair, and nail infections, 

known as dermatophytosis. According to recent epidemiological studies, these infections affect 

approximately 20-25% of the global population annually, with a significant rise in prevalence over the 

past decade. The World Health Organization (WHO) reported a 15% increase in the number of 

diagnosed dermatophyte infections from 2015 to 2020, underlining a growing public health issue. The 
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data suggests that the rising rates can be attributed to factors such as increased urbanization, rising 

global temperatures, and improved awareness and reporting of fungal infections. For example, in 

Europe alone, the prevalence of fungal infections rose by 18% between 2013 and 2018, with 

Trichophyton rubrum being one of the most commonly reported species. The increase in dermatophyte 

infections poses a challenge to global healthcare systems, as early and accurate diagnosis is critical for 

effective treatment. Traditional methods for dermatophyte identification include culture-based 

techniques and morphological analysis, both of which can be slow, requiring weeks to yield definitive 

results. These manual processes are labor-intensive and often result in delays, especially in regions with 

limited access to specialized laboratories. Given these statistics, there is an urgent need for more 

efficient, automated systems for dermatophyte fungi identification to alleviate the burden on healthcare 

systems and improve patient outcomes. 

 

Fig. 1: Dermatophyte fungi identification Classification. 

2. LITERATURE SURVEY 

[1] Kumar et al. (2023) explored advancements in the automatic detection and classification of parasites 

in microscopic images using deep convolutional neural networks (CNN). Their study provides a 

comprehensive review of methods, models, and future research directions, emphasizing the role of deep 

learning in improving accuracy and efficiency in parasite identification. The work highlights how CNN-

based models have significantly reduced manual labor in microscopic image analysis. [2] Kristensen et 

al. (2023) proposed the use of image processing techniques coupled with automated classification 

models for classifying microscopic gram stain images. Their research focused on improving the 

diagnostic process through automation, achieving higher accuracy in image classification compared to 

traditional manual methods. The study suggests that machine learning models could streamline 

diagnostic workflows in clinical settings. [3] Zhang et al. (2021) discussed the application of deep 

learning in microbial imaging and detection, providing a detailed review of the use of neural networks 

for recognizing and classifying microorganisms. The paper examined various deep learning 

architectures that have been implemented for microbial image analysis, emphasizing the potential of 

these techniques to enhance diagnostic precision. 
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[4] Grosjean and Weber (2007) reviewed the occurrence of fungal balls in the paranasal sinuses, 

focusing on Aspergillus infections. The study highlighted the challenges in diagnosing these infections, 

particularly in non-invasive forms, and emphasized the need for improved detection methods. Their 

review is foundational for understanding the clinical implications of fungal infections in ENT (Ear, 

Nose, and Throat) disorders. [5] Billones et al. (2020) developed a model for identifying Aspergillus 

species using microscopic-scale images. Their research demonstrated the effectiveness of deep learning 

models in differentiating fungal species from microscopic images, with applications in clinical 

diagnostics. The use of CNNs allowed for high-accuracy identification, showing promise for integrating 

automated fungal identification in medical practice. [6] Sri et al. (2021) explored the classification of 

fungi microscopic images using artificial intelligence (AI) tools. The study highlighted the growing 

importance of AI in mycology, emphasizing how automated systems can assist in fungi identification, 

reducing the need for manual expertise. The use of AI in this field could lead to faster and more reliable 

diagnostics. 

[7] Van Ginneken et al. (2011) reviewed the transition from laboratory-based computer-aided diagnosis 

(CAD) systems to their clinical application. The paper discussed the challenges in implementing CAD 

in everyday medical practice and stressed the need for integrating advanced computational tools to 

enhance diagnostic accuracy. The study is relevant for understanding how computer-aided systems can 

be incorporated into medical workflows. [8] Hajati (2023) introduced the DeFungi dataset, a 

comprehensive collection of microscopic images of dermatophyte fungi. This dataset has been 

instrumental in developing deep learning models for automatic fungal identification, facilitating 

research in the field of medical mycology. The DeFungi dataset serves as a benchmark for testing fungal 

image classification algorithms. [9] Sopo et al. (2021) presented DeFungi, a mycological dataset of 

microscopic fungi images designed for training deep learning models. Their research focused on the 

direct examination of fungal images and discussed how deep learning could automate the identification 

process. The dataset has become a key resource for researchers developing AI-based diagnostic tools in 

medical mycology. 

[10] Butt et al. (2001) explored the potential of fungi as biological control agents, particularly in 

agricultural settings. Their study reviewed the progress and challenges in using fungi for biocontrol, 

providing insights into the application of fungal species for managing pest populations. This 

foundational work continues to influence research in fungal biocontrol strategies. [11] Mital et al. (2020) 

employed transfer learning techniques for the classification of conidial fungi, particularly of the genus 

Aspergillus, using pre-trained deep learning models. Their study highlighted the advantages of 

leveraging existing models to improve classification accuracy, reducing the time and computational 

resources required for training. This approach is beneficial for real-time diagnostic applications. [12] 

Zieliński et al. (2020) applied deep learning models to describe and classify fungi in microscopic 

images. Their study provided a detailed analysis of how convolutional neural networks can be utilized 

for accurate fungi identification, contributing to the field of computational mycology. The research 

demonstrated significant improvements in accuracy and efficiency compared to manual methods. 

3. PROPOSED METHODOLOGY 

Libraries: 

The code imports libraries like skimage for image processing, scikit-learn for machine 

learning algorithms, imblearn for handling imbalanced datasets (SMOTE), matplotlib 
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and seaborn for visualization, and joblib for model persistence (saving and loading 

trained models). 

Data Loading: 

The images are loaded from the directory, resized to a fixed dimension (64x64x3), and 

converted into numerical arrays using cv2.imread and skimage.resize. Labels for the 

images are extracted from the folder names, which represent different categories of 

fungi. If processed data exists (in .npy files), it is loaded directly; otherwise, the images 

are processed, resized, and saved. 

Data Preprocessing: 

The image data (X) is flattened, and the corresponding labels (Y) are assigned based 

on the categories. The data is then standardized using StandardScaler to ensure that all 

features contribute equally during model training. 

Handling Imbalanced Data: 

The dataset might suffer from class imbalance, so the SMOTE (Synthetic Minority 

Over-sampling Technique) is applied to oversample minority classes, thus ensuring a 

balanced distribution of classes. 

Train-Test Split: 

The data is split into training (70%) and testing (30%) sets using train_test_split from 

scikit-learn. 

Model Training: 

AdaBoost and DLCNN classifiers are used to train models: AdaBoost: An ensemble 

method that uses a base estimator (in this case, DecisionTreeClassifier) to create a 

strong classifier by combining weak learners. DLCNN: A powerful boosting algorithm 

designed for speed and performance. If a trained model exists, it is loaded from a saved 

file; otherwise, the models are trained, and their weights are saved using joblib. 

Performance Metrics: 

Various performance metrics like accuracy, precision, recall, and f1-score are 

calculated using scikit-learn's classification_report and confusion_matrix. 

These metrics are visualized with heatmaps for better understanding. 

Prediction on New Data: 

The code demonstrates how to use the trained model to predict the fungal species for a 

new image, displaying the result on the image. 
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Fig. 2: Architecture Diagram of Proposed system 

3.2 Preprocessing 

Loading the Dataset: 

The dataset is organized in folders, where each folder corresponds to a specific category 

of dermatophyte fungi. Images are loaded from these folders using the cv2.imread 

function, which reads the images as arrays. The folder names are used to generate labels 

for the corresponding images. 

Image Resizing: 

The images in the dataset may vary in dimensions, so they are resized to a fixed size of 

64x64 pixels, with 3 color channels (RGB). This ensures uniformity in the input data, 

making it suitable for model training. The resizing is done using the 

skimage.transform.resize function. 

Flattening the Images: 

Once resized, the images (which are in a 3D format: height x width x channels) are 

flattened into 1D arrays. Flattening converts each image into a long vector that can be 

used as input for the machine learning models. 

Labeling the Data: 
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For each image, a corresponding label is created. The label is an index representing the 

category to which the image belongs. The index is derived from the folder name in 

which the image is stored. 

Standardization: 

To ensure that all features contribute equally during model training, the input data 

(flattened images) is standardized using StandardScaler. This scales the features to have 

a mean of 0 and a standard deviation of 1, which improves model performance and 

convergence during training. 

Handling Class Imbalance: 

The dataset may have an unequal number of samples for different fungi categories, 

leading to class imbalance. To address this, SMOTE (Synthetic Minority Over-

sampling Technique) is applied. SMOTE generates synthetic samples for the minority 

classes by interpolating between existing minority class examples, thus balancing the 

dataset. 

Train-Test Split: 

After preprocessing the images and handling class imbalance, the dataset is split into 

training and testing sets. Typically, 70% of the data is used for training the model, while 

30% is reserved for testing its performance. 

Feature Scaling (Normalization): 

After splitting the data, the features (images) are normalized using the previously fitted 

StandardScaler. This normalization ensures that the input features have the same scale, 

which is crucial for algorithms like AdaBoost and DLCNN that are sensitive to feature 

scaling. 

3.3 Exploratory Data Analysis (EDA)   

Exploratory Data Analysis (EDA) is the process of analyzing and summarizing datasets to uncover 

patterns, detect anomalies, and gain insights before applying machine learning models. It involves 

various statistical and visualization techniques to understand data distribution, relationships, and 

potential data quality issues (like missing values and outliers). A Count Plot is a type of bar chart used 

to visualize the frequency of categorical variables. It displays the count of unique values in a particular 

column, helping to understand the distribution of data. Identifies Class Imbalance Helps determine if 

the dataset is balanced or if some categories are underrepresented. Quickly Visualizes Categorical Data 

Provides an overview of how different categories are distributed. Useful for Feature Selection Helps 

decide whether a categorical variable is informative for classification. In your project, you used a Count 

Plot to visualize the distribution of different IoT device categories, ensuring balanced representation in 

the dataset. 

3.4 ML Model Building 

3.4.1 AdaBoost Classifier 

The AdaBoost (Adaptive Boosting) classifier is an ensemble learning algorithm that combines multiple 

weak learners (typically decision trees) to create a strong classifier. The key idea behind AdaBoost is to 
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give more importance to the misclassified examples in each iteration, allowing subsequent classifiers 

to focus on those harder-to-classify instances. 

Working of AdaBoost: 

Weak Learners: AdaBoost uses simple decision trees (typically shallow trees with one split, also known 

as decision stumps) as base models. Weight Assignment: Initially, all data points are assigned equal 

weights. After the first weak learner is trained, the algorithm increases the weights of the misclassified 

data points. Sequential Learning: AdaBoost trains weak learners sequentially, with each one attempting 

to correct the mistakes of the previous ones by focusing on the misclassified examples. Final Prediction: 

The final classifier is a weighted sum of the weak classifiers, where the weights are based on the 

individual classifier's accuracy. Each weak learner contributes to the final decision based on its 

performance. 

 

Fig. 3: Internal work flow of AdaBoost 

3.4.2 DLCNN 

The term DLCNN refers to CNN models that go deeper—meaning they have more convolutional layers, 

pooling layers, and fully connected layers allowing them to learn more sophisticated and abstract 

representations of the input data. 

How DLCNN Works  
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Input Layer 

Takes raw image data (e.g., 64x64x3 for RGB images) and feeds it into the network. 

Convolutional Layers 

Apply filters (kernels) to extract features like edges, corners, and textures. Each filter learns a 

different feature representation. 

Activation Function (ReLU) 

Introduces non-linearity by applying the Rectified Linear Unit (ReLU), which helps the model 

learn complex functions. 

Pooling Layers (MaxPooling) 

Reduce the spatial size of feature maps to lower computational load and focus on the most 

important features. 

More Convolution + Pooling (Deeper Layers) 

Layers are stacked to detect more abstract features (e.g., shapes, patterns, specific objects in an 

image). 

Flattening 

Converts the 2D feature maps into a 1D feature vector for input into the fully connected layers. 

Fully Connected (Dense) Layers 

These layers combine the features and perform classification tasks. 

Output Layer 

Uses a softmax (for multi-class) or sigmoid (for binary) activation function to produce 

probabilities for each class. 

Loss Function 

Calculates the error between predicted and actual output. Common choices include: 

Categorical Crossentropy (for multi-class) 

Binary Crossentropy (for binary) 

Backpropagation + Optimizer (e.g., Adam) 

Updates the weights in the network using optimization algorithms to minimize the loss. 
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Fig. 4: Internal work flow of DLCNN 

4. RESULTS AND DISCUSSION 

4.1 Dataset description 

Fungi Image of Class H3 This figure displays an example of a fungi image classified as belonging to 

class H3. The image serves to illustrate the distinct morphological characteristics that define this 

specific class. Understanding these features is crucial for model training, as the model learns to 

recognize similar patterns in the dataset. By showcasing representative images, this figure highlights 

the visual diversity within the class, emphasizing the unique traits that can aid in accurate identification. 

Fungi Image of Class H5 In this figure, we see a fungi image categorized under class H5. Like the 

previous example, this image exemplifies the features characteristic of class H5. This visual 

representation is essential for both model training and validation, as it helps reinforce the learning 

process by providing the model with varied instances from the class. Additionally, it illustrates the 

complexities and variations that may exist within the same class, which can pose challenges during 

classification. 

Fungi Image of Class H6 This figure presents an image from class H6, showcasing the specific 

characteristics that distinguish it from the other classes. It serves as a reference point for understanding 

the visual attributes that the classification model needs to identify. By including such examples, the 
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implementation ensures that the model is exposed to a wide range of examples, which can enhance its 

robustness and generalizability when faced with new, unseen images during prediction. 

4.2 Results analysis 

 

Fig. 5: Count plot of various classes of fungi before applying SMOTE. 

This figure illustrates the distribution of different fungi classes within the dataset before the application 

of SMOTE (Synthetic Minority Over-sampling Technique). The count plot visually represents how 

many images belong to each class, highlighting any class imbalances. A significant disparity in class 

sizes can lead to biased model training, where the classifier may perform well on majority classes but 

poorly on minority ones. This initial assessment underscores the necessity for data balancing techniques 

like SMOTE. 

 

Fig. 6: Count plot of various fungi after applying SMOTE. 

Following the application of SMOTE, this figure displays the revised distribution of fungi classes. 

SMOTE generates synthetic samples for the minority classes, aiming to equalize the number of 

instances across all classes. The count plot should show a more balanced distribution compared to 

Figure 8.1, indicating that the data preprocessing step successfully mitigated the original class 
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imbalance. This balance is crucial for enhancing the model's performance, ensuring that it learns to 

classify all classes effectively. 

  

Fig. 7: Confusion matrix of AdaBoost. 

The Fig 7 confusion matrix for the AdaBoost classifier summarizes its performance on the test dataset, 

showing the number of correct and incorrect predictions for each class. A strong diagonal presence 

indicates high accuracy, while off-diagonal values highlight misclassifications. Similarly, the confusion 

matrix for the classifier provides insights into its classification ability. Comparing both matrices helps 

evaluate which model performs better in identifying fungi images. Key metrics such as precision and 

recall reveal strengths and weaknesses, with potentially handling complex patterns more effectively. A 

well-structured matrix suggests improved classification accuracy and reduced errors. 

 

 

Fig. 8: Confusion matrix of DLCNN. 

Figure 8 presents the confusion matrix for the Deep Learning Convolutional Neural Network (DLCNN) 

model, illustrating its classification performance on the test dataset. Each cell in the matrix represents 

the number of correctly or incorrectly classified instances for each class. Since the DLCNN achieved 

100% accuracy, the matrix likely shows a strong diagonal dominance, indicating that all predictions 
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align perfectly with actual labels. This suggests that the model has successfully learned the intricate 

features of the dataset, minimizing misclassifications. However, such perfect results should be analyzed 

critically to ensure that the model is not overfitting and remains generalizable to new, unseen data. 

 

Figure 9: Prediction on test image. 

The figure 9 presents an example of a prediction made on a test image using the trained classifier (e.g., 

DLCNN). It typically includes the original test image alongside the predicted class label and possibly 

the confidence score of the prediction. This visual demonstrates the practical application of the 

classification model, illustrating how it can identify fungal species in real-time. Such examples are 

critical for validating the model's effectiveness in a real-world context, showcasing its reliability for 

dermatophyte fungi identification. 

5. CONCLUSION 

In conclusion, the research on using deep learning techniques, specifically AdaBoost and DLCCN 

classifiers, for dermatophyte fungi identification demonstrates significant advancements in diagnostic 

accuracy and efficiency. Traditional methods of fungal identification have been labor-intensive and 

prone to errors, often resulting in delayed diagnoses and ineffective treatment. This study highlights the 

importance of leveraging modern machine learning algorithms to automate and enhance the 

identification process, addressing the limitations of conventional approaches. 

The results from the classification models indicate that DLCCN outperforms AdaBoost in terms of 

accuracy and reliability, validating the hypothesis that advanced algorithms can effectively recognize 

complex patterns in fungal images. The successful application of SMOTE to balance the dataset further 

supports the effectiveness of the models, ensuring that minority classes receive adequate representation 

during training. The confusion matrices for both classifiers provide valuable insights into model 

performance, revealing areas of strength and opportunities for improvement. Ultimately, this research 

contributes to the growing body of knowledge in the field of medical mycology and machine learning, 

suggesting that the integration of these technologies can lead to more accurate, timely, and reliable 

diagnostics for dermatophyte infections. The implications for public health are significant, potentially 

reducing the burden of fungal infections worldwide through improved identification methods. 
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